C	Questi	on	Answer	Mark	Guidance
1	(a)		B✓	1	ALLOW $CF_2CF_2 OR C_2F_4 OR$ tetrafluoroethene
	(b)	(i)	H ₃ C C H CH ₃ ✓	1	ALLOW correct structural OR displayed OR skeletal OR mixture of the above ALLOW E isomer H_3C C C C C C C C C C
		(ii)	HCI ✓	1	DO NOT ALLOW Cl ₂ IGNORE names IGNORE nitrogen oxides / NO _x
	(c)	(i)	ANY TWO FROM THE FOLLOWING 🗸	1	
			Low reactivity OR will not burn/non-flammable		ALLOW inert OR stable DO NOT ALLOW inflammable
			Volatile OR low boiling point		ALLOW it is a gas IGNORE easily compressed
			non-poisonous OR non-toxic		IGNORE not harmful
					IGNORE references to solubility

Question	Answer	Mark	Guidance
Question	AnswerBenefit of ozone layer to life (1 mark)Ozone absorbs UV (radiation)UV at Earth's surface is reduced \checkmark ORMaintenance of O_3 concentration (1 mark) $_3 \rightleftharpoons O_2 + O \checkmark$ OProduction of radicals from G (1 mark) $_2Cl_2 \longrightarrow C l + CF_2Cl \checkmark$ CFBreakdown of O_3 (2 marks) $l + O_3 \longrightarrow C lO + O_2 \checkmark$	Mark 5	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC For all equations, IGNORE dots on radicals Essential idea for first mark is that UV is removed in some way. ALLOW Prevents UV damaging life or stated type of damage, e.g. cataracts, skin cancer, mutation, crop damage DO NOT ALLOW ozone absorbs IR ALLOW $_3 \longrightarrow O_2 + O$ $_0 2 + O \longrightarrow O_3$ ANRIOT ALLOW 2O ₃ $\rightleftharpoons 3O_2$ OR $O_3 + O \longrightarrow 2O_2$ for this mark DO NOT ALLOW equations with other CFCs DO NOT ALLOW CF ₂ Cl ₂ $\longrightarrow 2C$ $l + CF_2$ These are the only acceptable equations IGNORE overall equation (does not show role of catalyst)
	$l + O_3 \longrightarrow C \ lO + O_2 \checkmark$ $lO + O \longrightarrow Cl + O_2$ $OR \qquad ClO + O_3 \longrightarrow Cl + 2O_2 \checkmark$		IGNORE overall equation (does not show role of catalyst) e.g. $O_{3+} O \longrightarrow 2O_2$

Question	Answer	Mark	Guidance
(iii)	D ✓	1	ALLOW CHF_2Cl ALLOW B OR C_2F_4 OR CF_2CF_2
(d) (i)	 bond vibrates (more) OR bond bends (more) OR bond stretches (more) ✓ 	1	BOND essential IGNORE molecule vibrates/rotates Assume "It" refers to the molecule and is insufficient DO NOT ALLOW any reference to bond breaking DO NOT ALLOW a stated bond if not present in C and F e.g. C–O, C–H not prese
(ii)	$Cl_3C^+ \checkmark$ $CF_2 Cl^+ \checkmark$	2	ALLOW 1 mark for Cl_3C AND $CF_2 Cl$ <i>i.e.</i> no + charge used ALLOW 1 mark for Cl_3C^- AND $CF_2 Cl^-$ <i>i.e.</i> – charge used on both
		Total 13	

Q	luesti	on	Answer	Mark	Guidance
2	(a)	(i)	But-1-ene ✓	2	ALLOW displayed formula
			$\begin{vmatrix} H & C_2H_5 \\ & \\ C = C \\ & \\ H & H \checkmark$		ALLOW C ₂ H ₅ CH=CH ₂
		(ii)	Poly(ethenol) has (many) O–H group(s) ✓	2	ALLOW poly(ethenol) has hydroxyl group OR hydroxy group OR is an alcohol DO NOT ALLOW hydroxide
			Poly(ethenol) forms hydrogen bonds with water \checkmark		DO NOT ALLOW 'it forms hydrogen bonds'
	(b)			4	ANNOTATE ANSWER WITH TICKS AND CROSSES
			CO is a poisonous gas ✓		ALLOW CO reduces amount of oxygen transported in blood Forming carboxyhaemoglobin/binds with haemoglobin is not sufficient
			HCI is acidic/forms acid rain OR corrosive OR HCI will react with metalwork OR HCI will react with marble/limestone buildings ✓		IGNORE HC/ is toxic IGNORE references to ozone layer and greenhouse effect
			ANY TWO METHODS FROM: Method 1 Remove HC <i>I</i> by reacting with a base OR remove HC <i>I</i> by use of a gas scrubber ✓		Methods 1 to 3 must be linked to a gas
			Method 2 Develop ways of ensuring all CO is oxidised to CO_2 OR ensure complete combustion to avoid making CO \checkmark		IGNORE reference to catalytic converter
			Method 3 Remove CO_2 by CCS \checkmark		ALLOW specific examples of CCS e.g. CO_2 stored as a metal carbonate / CO_2 stored deep under sea / CO_2 stored in rock
			 Method 4 (Use methods to remove the need for incineration such as) separation AND recycling of the plastics/polymers ✓ Method 5 (Use methods to remove the need for incineration such as) developing biodegradable/compostable plastics/polymers ✓ 		ALLOW (Use methods to remove the need for incineration such as) use of plastics/polymers as a feedstock for making other chemicals

Question	Answer	Mark	Guidance
(c)	ANY TWO FROM:	2	
	Idea that all countries contribute towards pollution \checkmark		ALLOW some countries produce more pollution than others.
	Idea that atmospheric pollution (from incineration travels) across borders OR waste plastics travel across borders / waste plastics travel across the sea ✓		
	Cooperation means that scientists can share ideas OR scientists can warn governments of risk OR world-wide legislation can be introduced OR allows monitoring of pollution in different countries OR richer countries can help poorer countries introduce pollution controls ✓		ALLOW reference to protocols
	One country cannot control pollution unless all countries do \checkmark		
	Total	10	

C	Questi	ion	Expected Answers	Marks	Additional Guidance
3	(a)	(i)	Infrared (radiation absorbed) \checkmark by (C–H) bond vibration \checkmark	2	ALLOW bond stretching OR bond bending DO NOT ALLOW molecules vibrating
		(ii)	Greater concentration of carbon dioxide OR more carbon dioxide is being made ✓	1	 ALLOW carbon dioxide is the main contributor to global warming DO NOT ALLOW any response that states that CO₂ causes ozone depletion ALLOW C=O bonds absorb IR more readily than C–H bonds ALLOW carbon dioxide has a greater greenhouse effect

Question	Expected Answers	Marks	Additional Guidance
(b)	Any five from the following: Developing carbon capture AND storage ✓	5	carbon, capture AND storage required ALLOW CCS
	One example of CCS \checkmark		Examples of CCS
			Examples of CCS
	Second example of CCS ✓		deep in the oceans OR on the sea-bed ✓
			DO NOT ALLOW dissolve CO ₂ in the sea OR stored in ocean
			storage in geological formations
			OR piped into disused or partially filled oil wells or porous rocks OR under the sea-bed ✓
	Provide evidence to governments OR international		by reaction with metal oxides OR reaction to form (solid) carbonates
	conferences (e.g. Kyoto) OR reports to United Nations etc ✓		OR stored as a carbonate
	Educating society OR writing in journals OR producing documentaries OR writing books OR making posters \checkmark		OR equation to show formation of metal carbonate ✓ IGNORE mineral storage
	Monitoring atmospheric changes \checkmark		
	Develop alternative energy sources ✓		
	One example of an alternative energy source e.g. develop fuel cells OR developing solar power		ALLOW idea of biofuels only if linked to carbon-neutrality
	OR fuels that do not produce $CO_2 \checkmark$		
	(Develop) more efficient engines for transport		IGNORE reforestation
	OR lean burn engines OR hybrid engines OR electric cars ✓		IGNORE reference to CFCs
	Find uses for carbon dioxide		DO NOT ALLOW use less carbon dioxide
	OR named use: e.g. dry cleaning OR making decaffeinated coffee OR		
	blowing agent OR fizzy drinks, etc \checkmark		

Question	Expected Answers	Marks	Additional Guidance
(c)	Any two from the following:	2	
	 There are times when CO₂ has a high concentration and the temperature is also high OR There are times when CO₂ has a low concentration and the temperature is low ✓ It is impossible to measure with certainty the average temperature years ago ✓ There are other gases that may cause a greenhouse effect OR There are other factors that may cause a greenhouse effect ✓ There are very few anomalous results ✓ 		ALLOW a (positive) correlation between temperature and carbon dioxide concentration but DO NOT ALLOW just 'a correlation' IGNORE 'graphs are the same shape' IGNORE 'graphs are similar'
	Total	10	

C	luesti	on	Answer	Mark	Guidance
4	(a)		$n \xrightarrow{H}_{CI} = c \xrightarrow{H}_{H} \longrightarrow \left\{ \begin{array}{c} H & H \\ - & - \\ -$	2	Displayed formulae MUST be used to award each mark
			Correct polymer with side links \checkmark Balanced equation for formation of correct polymer - correct use of <i>n</i> in the equation and brackets \checkmark		<i>n</i> on LHS can be at any height to the left of formula AND <i>n</i> on the RHS must be a subscript (essentially below the side link)
	(b)	(i)	$CH_2CHCl + 2O_2 \longrightarrow CO + CO_2 + HCl + H_2O \checkmark$	1	ALLOW any other correctly balanced equation with the same reactants and products ALLOW C_2H_3Cl for CH_2CHCl
		(ii)	Sodium hydrogencarbonate neutralises HC <i>l</i> ✓	1	Assume that 'it' refers to sodium hydrogencarbonate but DO NOT ALLOW other chemicals e.g. sodium ALLOW NaHCO ₃ is a base ALLOW forms a salt or sodium chloride or NaCl ALLOW equation to show formation of NaCl from NaHCO ₃ and HCl even if not balanced. IGNORE reacts

Question	Answer	Mark	Guidance
(c)	ANY TWO from abundance (in atmosphere) OR amount (in atmosphere) OR (atmospheric) concentration OR percentage (in air) ✓ OR ability to absorb infrared/IR (radiation)✓ OR	2	ALLOW absorption of infrared/IR
(d) (i)	residence time ✓Any balanced equation between a metal oxide and carbon dioxide to form a carbonate e.g CaO + CO2 \longrightarrow CaCO3 ✓	1	ALLOW MO for metal oxide
(ii)	ANY ONE FROM deep in oceans OR in geological formations OR (deep) in rocks OR in mines OR in oil wells OR in gas fields ✓	1	Assume that 'it' refers to carbon dioxide but DO NOT ALLOW carbon DO NOT ALLOW reacted with oxides or stored as carbonates.
	Total	8	

Qı	uesti	on	Answer	Marks	Guidance	
5	(a)		N ✓	1	ALLOW CF ₃ CFCl ₂	
	(b)	(i)	S ✓	1	ALLOW CH ₃ CHBrCH ₂ CHICH ₃	
	(b)	(i) (ii)	S ✓ curly arrow from HO ⁻ to carbon atom of C-Br bond ✓ Dipole shown on C-Br bond, C^{δ^+} and Br^{δ^-} , and curly arrow from C-Br bond to the halogen atom – arrow must be very close to the bond ✓ correct products of the reaction – not ambiguous with the C_3H_7 ✓ C_3H_7 ✓ C_3H_7 ✓ C_3H_7 ✓ C_3H_7 ✓ C_3H_7 ✓ C_3H_7 ✓ C_3H_7 C_3H_7 C_3	1 4	 ALLOW CH₃CHBrCH₂CHICH₃ The curly arrow must start from the oxygen atom of the OH⁻, and must start either from a lone pair or from the negative charge. No need to show lone pair if curly arrow came from negative charge DO NOT ALLOW attack by KOH or K⁺OH⁻ ALLOW S_N1 Dipole shown on C-Br bond, C⁵⁺ and Br⁵⁻, and curly arrow from C-Br bond to the halogen atom – arrow must be very close to the bond ✓ Correct carbocation drawn AND curly arrow from HO⁻ to the carbocation (the curly arrow must start from the oxygen atom of the OH⁻, and must start either from a lone pair or from the negative charge. No need to show lone pair if curly arrow came from negative charge) ✓ Correct products of the reaction – not ambiguous with 	
			Н СН₃СНѻ҈ С, Н ҙ — С — ОН + Вг [−] 		the $C_3H_7 \checkmark$ nucleophilic substitution \checkmark	
			nucleophilic substitution \checkmark			

Question	Answer	Marks	Guidance
(b) (iii)	 C-I bond is weaker than C-Br bond OR C-I has a lower bond enthalpy than C-Br bond OR C-I bond is longer than C-Br bond AND C-I bond is easier to break than C-Br bond OR less energy is needed to break the C-I bond ✓ 	1	Answer must refer to the correct bond ALLOW ora IGNORE references to electronegativity
(c)	HC/ + CH ₃ CHCHCH ₃ → CH ₃ CH ₂ CHC/CH ₃ Correct structural formula of product \checkmark Equation with structural formulae \checkmark	2	Must use structural formulae for both organic compounds in the equation ALLOW CH ₃ CH=CHCH ₃ for but-2-ene ALLOW two marks for correct equation with structural formulae ALLOW one mark for correct equation with displayed formulae IGNORE any mechanisms
(d)	HCFCs OR hydrocarbons OR HFCs ✓	1	ALLOW alkanes DO NOT ALLOW specific alkanes
	Total	10	